Вирусология » Страница 6 » Красивая, значит здоровая
Главная Вирусология Венерология Стоматология Аллергология Диетология Лекарства Категория
Логин:  
Пароль:
ЖЕНСКОЕ ЗДОРОВЬЕ МЕДИЦИНА ПИТАНИЕ И ДИЕТЫ ДЕТСКОЕ ЗДОРОВЬЕ ЗДОРОВЫЙ ОБРАЗ ЖИЗНИ БОЛЕЗНИ Новости медицины Отдых и хобби Звезды
Реклама на сайте
Похудение
Фэн-шуй и астрология для  снижения веса

Фэн-шуй и астрология для снижения веса

Желание женщины поддерживать свой вес в норме может быть вызвано не только стремлением соответствовать модельным параметрам, но и простой заботой о своём здоровье. Грамотное сбалансированное питание и физические нагрузки по праву считаются лучшими
28.09.16

Продукты, стимулирующие обмен веществ: от бобов до орехов

Продукты, стимулирующие обмен веществ: от бобов до орехов

Интенсивность основного обмена - один из факторов, от которых зависит, как быстро мы избавляемся от нежелательных килограммов. Самый простой и натуральный способ ускорить обмен веществ - употреблять в пищу стимулирующие продукты. Тех, кто активно
06.09.16

Первые вирусологические лаборатории в СССР созданы в 30-е годы: в .— лаборатория по изучению вирусов растений в Украинском институте защиты растений, в .— отдел вирусов в Институте микробиологии АН СССР, а в . он был реорганизован в отдел вирусов растений, которым в течение многих лет руко­водил В. Л. Рыжков. В . организована Централь­ная вирусологическая лаборатория Наркомздрава РСФСР в Москве, которой заведовал Л. А. Зильбер, а в . эта лаборатория реорганизована в отдел вирусов Всесоюз­ного института экспериментальной медицины, его руко­водителем был назначен А. А. Смородинцев. В . на базе отдела вирусов создан Институт вирусологии АМН СССР, которому в . присвоено имя Д. И. Ива­новского.

В течение 50-х и 60-х годов созданы научные и про­изводственные вирусологические учреждения в нашей стране: Институт полиомиелита и вирусных энцефалитов АМН СССР, Институт вирусных препаратов Минис­терства здравоохранения СССР, Киевский институт ин­фекционных болезней, Всесоюзный научно-исследова­тельский институт гриппа Министерства здравоохранения СССР в Ленинграде и ряд других.

Важную роль в подготовке кадров вирусологов сыграла организация в . кафедры вирусологии в Централь­ном институте усовершенствования врачей МЗ СССР. Кафедры вирусологии были созданы на биологических факультетах Московского и Киевского университетов.



Синтез белка в клетке происходит в результате трансляции иРНК. Трансляцией называется процесс пере­вода генетической информации, содержащейся в иРНК, на специфическую последовательность аминокислот. Иными словами, в процессе трансляции осуществляется перевод 4-буквенного языка азотистых оснований на 20-буквенный язык аминокислот.

Транспортные РНК. Свою аминокислоту тРНК узнают по конфигурации ее боковой цепи, а специфический фермент аминоацил-синтетаза катализирует ассоциацию тРНК с аминокислотой. В клетке существует большое количество разнообразных видов тРНК. Поскольку для каждой аминокислоты должна быть своя тРНК, количе­ство видов тРНК должно быть не меньше 20, однако в клетке их значительно больше. Это связано с тем, что для каждой аминокислоты существует не один, а несколь­ко видов тРНК. Молекула тРНК представляет собой однонитчатую РНК со сложной структурой в виде клено­вого листа (рис. 18). Один ее конец связывается с амино­кислотой (конец а), а противоположный — с нуклеоти-дами иРНК, которым они комплементарны (конец б). Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», комплементарные кодону три нуклеотида на конце тРНК называются «антикодон».

Рибосомы. Синтез белка в клетке осуществляется на   рибосоме.   Рибосома   состоит   из   двух   субъединиц,

Рис. 18. Строение транс­портной РНК. а — участок связывания с аминокислотой; б — участок связывания с нРНК (анти-кодон).

большой и малой, 'малая субъединица примерно в два раза меньше большой. Обе субъединицы содержат по одной молекуле рибосомальной РНК и ряд белков. Рибо-сомальные РНК синтезируются в ядре на матрице ДНК с помощью РНК-полимеразы I. В малой рибосомальной субъединице есть канал, в котором находится информа­ционная РНК. В большой рибосомальной субъединице есть две полости, захватывающие также малую рибосо-мальную субъединицу. Одна из них содержит аминоациль-ный центр (А-центр), другая — пептидильный центр (П-центр)  (рис. 19).

Фазы трансляции. Процесс трансляции состоит из трех фаз: 1) инициации, 2) элонгации и 3) терминации.

Инициация трансляции. Это наиболее ответ­ственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» на 5'-конце и скользит к 3'-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторным кодоном являет­ся кодон АУГ или ГУГ, копирующие метионин. С метио-нина начинается синтез всех полипептидных цепей.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необ­ходимые для начала трансляции. Это несколько молекул "ч=лка,   которые   называются   «инициаторные   факторы».

19. Формирование и функционирование рибосомы (схема). 1— малая рибосомальная субъединица с присоединенной инициаторной метионил-тРНК; 2— большая рибосомальная субъединица; 3— инициаторный комплекс, содержащий малую рибосомальную субъединицу, метионил-тРНК и иРНК; заштрихованные прямоугольники — белковые факторы инициации (9 факторов в эукариотических клетках); 4— функционально активная рибосо­ма; А — аминоацильный центр, П— пептидильный центр в большой рибосо­мальной субъединице; 5, б, 7— процесс элонгации полипептидной цепи; показан перенос амииоацил-тРНК между двумя центрами на большой рибосомальной субъединице, осуществляемый с помощью пептидил-трансфера-зы.

Их по крайней мере три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК и, таким образом, являются определяющим фактором в дискриминации между различными ИРНК, присутствующими в клетке, как правило, в избыточном количестве.

В результате формируется комплекс, необходимый для инициации трансляции, который называется инициа­торным комплексом. В инициаторный комплекс входят: 1) иРНК; 2) малая рибосомальная субъединица; 3) ами-ноацил-тРНК, несущая инициаторную аминокислоту; 4) инициаторные факторы; 5) несколько молекул ГТФ.

В рибосоме осуществляется слияние потока информа­ции с потоком аминокислот. Аминоацил-тРНК входит в А-центр большой рибосомальной субъединицы, и ее антикодон взаимодействует с кодоном иРНК, находящей­ся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидиль­ный центр, и ее аминокислота присоединяется к ини­циаторной аминокислоте с образованием первой пептид­ной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспор­те специфических аминокислот. На ее место из А-центра в П-центр перебрасывается новая тРНК и образуется новая пептидная связь. В А-центре появляется вакантный кодон   иРНК,   к   которому   немедленно   присоединяется

1— большая рибосомальная субъединица; 2— малая рибосомальная субъедини­ца; 3— иРНК; 4— растущая полипептидная нить.

соответствующая тРНК и происходит присоединение новых аминокислот к растущей полипептидной цепи (см. рис. 19).

Элонгация трансляции. Это процесс удлине­ния, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептид­ной связи. Происходит постоянное протягивание нити иРНК через рибосому и. «декодирование» заложенной в ней генетической информации (рис. 20). иРНК функ­ционирует на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, коди­руемую данной иРНК. Группа рибосом, работающих на одной молекуле иРНК, называется полирибосомой, или полисомой. Размер полисом значительно варьирует в зависимости от длины молекулы иРНК, а также от расстояния между рибосомами. Так, полисомы, которые синтезируют гемоглобин, состоят из 4—6 рибосом, высо­комолекулярные белки синтезируются на полирибосомах, содержащих 20 и более рибосом.

Терминация трансляции. Терминация транс­ляции происходит в тот момент, когда рибосома доходит ' до терминирующего кодона в составе иРНК. Трансляция прекращается, и ' полипептидная цепь освобождается из полирибосомы. После окончания трансляции полири­босомы распадаются на субьединицы, которые могут войти в состав новых полирибосом.

Свойства полирибосом. По топографии в клетке полирибосомы делят на две большие группы — свободные и связанные с мембранами эндоплазматической сети, которые составляют соответственно 75 и 25%. Между двумя группами полирибосом нет принципиальных струк­турных и функциональных различий, они формируются из одного и того же пула субъединиц и в процессе транс­ляции могут обмениваться субъединицами. Мембраны, с

которыми связаны полирибосомы, называются грубыми или шероховатыми мембранами в отличие от гладких мембран, не содержащих полирибосомы. Связь полири­босом с мембранами осуществляется с помощью сигналь­ного пептида — специфической последовательности на аминоконце синтезирующихся гликопротёидов. На связан­ных с мембранами полирибосомах синтезируются внутри-мембранные белки, которые сразу же после синтеза оказываются в составе мембран.

Трансляция в зараженных вирусом клетках. Стратегия вирусного генома, использующего клеточный аппарат трансляции, должна быть направлена на создание меха­низма для подавления трансляции собственных клеточных иРНК и для избирательной трансляции вирусных иРНК, которые всегда находятся в значительно меньшем коли­честве, чем клеточные матрицы. Этот механизм реали­зуется на уровне специфического узнавания малой рибосомальной субъединицей вирусных иРНК, т. е. на уровне формирования инициирующего комплекса. По­скольку многие вирусы не подавляют синтез клеточных иРНК, в зараженных клетках возникает парадоксальная ситуация: прекращается трансляция огромного фонда функционально активных клеточных иРНК, и на освобо­дившихся рибосомах начинается трансляция одиночных молекул вирусных иРНК. Специфическое узнавание рибосомой вирусных иРНК осуществляется за счет вирусспецифических инициаторных факторов.

Два способа формирования вирусных белков. По­скольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо , длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков: 1) иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функцио­нально активные белки; 2) иРНК транслируется с обра­зованием зрелых белков, или белков, которые лишь незна­чительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-со-держащих «плюс-нитевых» вирусов — пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую поли-

[             пептидную цепь, так называемый полипротеид, который

сползает в виде непрерывной ленты с рибосомного «кон-)             вейера» и нарезается на индивидуальные белки нужного

г             размера.   Нарезание   вирусных   белков   является   много-

<             ступенчатым процессом, осуществляемым как вирусспеци-

фическими,  так  и  клеточными  протеазами.   В   клетках,зараженных  пикорнавирусами,  на  конце  полипротеина-предшественника  находится  белок с протеазной  актив-||             ностью.    Вирусная    протеаза    осуществляет    нарезание

||            предшественника на 3 фрагмента, один из которых являет-

»            ся предшественником для структурных белков, второй —

I            для неструктурных белков, функции третьего фрагмента

I             неизвестны.  В  дальнейшем  нарезании  участвуют  вирус-

специфические и клеточные протеазы.|                 Интересный   вариант    первого    способа    трансляции

обнаруживается у альфа-вирусов (семейство тогавирусов).

I Геномная РНК с коэффициентом седиментации 42 8| транслируется с образованием полипептида-предшествен-1             ника для неструктурных белков. Однако доминирующей

в зараженных клетках иРНК является РНК с коэффи-[            циентом седиментации 26 8,  составляющая одну треть

I            геномной РНК. Эта иРНК транслируется с образованием

             предшественника для структурных белков.

'                   Второй    способ    формирования    белков    характерен

|            для   ДНК-содержащих   вирусов   и   большинства   РНК-

'            содержащих  вирусов.  При  этом  способе  синтезируются

короткие  моноцистронные  иРНК   в  результате  избира­тельной   транскрипции   одного   участка   генома   (гена).I              Однако все вирусы широко используют механизм пост-

трансляционного нарезания белка.I                 Вирусспецифические полисомы. Поскольку длина ви-

русных  иРНК   варьирует  в  широких   пределах,   размервирусспецифических  полисом  также  широко  варьирует:(              от 3—4 до нескольких десятков рибосом на одной нити

II              иРНК. При инфекциях, вызванных пикорнавирусами,I              формируются крупные полисомы, представляющие собой1              агрегаты, состоящие из 20—60 рибосом. При инфекциях,I вызванных другими вирусами животных, использующимиI второй способ трансляции, формируются полисомы не-I большого размера. Между размерами иРНК и величиной1              полисом существует определенная корреляция, однакоI в ряде случаев полисомы имеют больший или меньшийI              размер по сравнению с ожидаемым. Эта особенностьI вирусных полисом объясняется необычным простран-1              ственным расположением рибосом на вирусных матрицах,

связанных   с   меньшей   плотностью   упаковки   рибосом на молекуле иРНК.

Вирусспецифические полисомы могут быть как сво­бодными, так и связанными с мембранами. В зараженных вирусом полиомиелита клетках полипротеид синтезируется на связанных с мембранами полисомах; при инфекциях, вызванных сложно устроенными вирусами, формируются как свободные, так и связанные с мембранами полисомы, которые вовлечены в синтез разных классов вирусных полипептидов. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синте­зируются на полисомах, связанных с мембранами.

Модификация вирусных белков. В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, и зрелые функцио­нально активные белки часто не идентичны их вновь синтезированным предшественникам. Широко распростра­нены такие посттрансляционные ковалентные модифика­ции, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирова-ние. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Среди широкого спектра модифицированных реакций лишь небольшое количество процессов является обрати­мыми: 1) фосфорилирование-дефосфорилирование; 2) ацилирование-деацилирование; 3) метилирование-демети-лирование; 4) образование дисульфидных связей. Среди подобных обратимых модификаций белков следует искать процессы, обусловливающие механизм регуляции актив­ности белков в эукариотической клетке.

Гликозилирование. В составе сложно устроенных РНК- и ДНК-содержащих вирусов имеются белки, содер­жащие ковалентно присоединенные боковые цепочки углеводов — гликопротеиды. Гликопротеиды расположе­ны в составе вирусных оболочек и находятся на поверхности вирусных частиц. Своей гидрофобной частью они погружены в двойной слой липидов, а некоторые гликопротеиды проникают через него и взаимодействуют с внутренним компонентом вируса (рис. 21). Гидрофиль­ная часть молекулы обращена наружу.

Синтез и „ внутриклеточный транспорт гликопротеидов характеризуется рядом особенностей, присущих клеточ­ным   внутримембранным   белкам.   Их   синтез   осуществ-

Рис. 21. Строение липопротеидной оболочки вируса Синдбис.

Е1, Е2, ЕЗ— молекулы вирусных гликопротеидов; К — капсидный белок; У —

углеводные цепочки; Л — липидный бислой.

ляется на полисомах, ассоциированных с мембранами, и белки сразу же после синтеза попадают в шероховатые мембраны, откуда транспортируются в мембраны эндоплаз-матической сети и в комплекс Гольджи, где происходит модификация и комплектование углеводной цепочки, а затем — в плазматическую мембрану в ряде случаев путем слияния с ней везикул комплекса Гольджи. Такой целена­правленный транспорт осуществляется благодаря имеющей­ся на аминоконце белка специфической последовательности из 20—30 аминокислот (сигнальному пептиду). Сигналь­ный пептид отрезается от белковой молекулы после того, как гликопротеид достигает плазматической мембра­ны.

' Гликозилирование полипептидов является сложным многоступенчатым процессом, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый сахар присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликози-лирования происходят путем последовательного присоеди­нения Сахаров в виде блоков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране.     Окончательное     формирование     углеводной

цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы. Процесс гликозилирова-ния не влияет на транспорт полипептида к плазматической мембране, но имеет существенное значение для экспрес­сии биологической активности белка. При подавлении гликозилирования соответствующими ингибиторами (ана­логи Сахаров типа 2-дезоксиглюкозы, антибиотик туни-камицин) нарушается синтез полипептидов, блокируется сборка вирионов миксовирусов, рабдовирусов, альфа-вирусов или образуются неинфекционные вирионы герпеса и онковирусов.

Сульфирование. Некоторые белки сложно устроенных РНК- и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с сахарным компонентом гликопрбтеида.

Ацилирование. Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок О вируса везикулярного стоматита, белок НИ вируса ньюкаслской болезни и др.) содержат ковалентно связан­ные 1—2 молекулы жирных кислот.

Нарезание. Многие вирусные белки и в первую очередь гликопротеиды приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функцио­нальных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида, Ег и Ез, вируса леса Семлики) либо с образованием одного функционально активного белка и неактивного фрагмента, например белки Р и НЫ парамик-совирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеид, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусом способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование. Фосфорпротеиды содержатся прак­тически в составе всех вирусов животных, РНК- и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако

фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. Одним из примеров является фосфорилирование белка онкогенных вирусов, обусловливающего клеточную трансформацию. Этот белок является продуктом гена 8гс и одновременно протеинки-назой и фосфопротеидом, т. е. способен к самофосфо-рилированию.

С процессом фосфорилирования связан механизм антивирусного действия интерферона. В зараженных вирусом клетках интерферон индуцирует синтез протеин-киназы, которая фосфорилирует субъединицу инициирую­щего фактора трансляции ЭИФ-2, в результате чего блокируется трансляция вирусных информационных РНК. Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных иРНК, специфиче­ском узнавании вирусных иРНК рибосомой, белокнуклеи-новом и белок-белковом узнавании на стадии сборки вирусных частиц.



Вирусы обычно рассматриваются как паразиты — воз­будители инфекционных болезней, наносящих вред челове­ку, животным, растениям. Однако такой подход нельзя признать правильным. Была высказана гипотеза [Жда­нов В. М., 1974], согласно которой вирусы являются важ­ным фактором эволюции органического мира. Преодоле­вая видовые барьеры, вирусы могут переносить отдельные гены или группы генов, а интеграция вирусной ДНК с хромосомами клеток может приводить к тому, что вирус­ные гены становятся клеточными генами, выполняющими важные функции.

Поскольку вирусы, будучи особыми формами жизни, не являются микроорганизмами, то и вирусология является не разделом микробиологии, а самостоятельной научной дисциплиной, имеющей свой объект изучения и свои методы исследования.





Женское здоровье © 2011-2017 Все права защищены.Копирование материалов разрешено при условии установки активной ссылки на "http://zhenskoezdorovje.ru/". Интеллектуальная собственность юридически защищена Женское здоровье


Яндекс.Метрика